C2.0 Geometry Unit 1: Constructions, Congruence, and Transformations

| Topic | Course Overview |
| :--- | :--- | :--- |

Topic	Course Overview
	Students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They begin by comparing examples of rigid and non-rigid transformations to establish that rigid transformations maintain congruency, but the congruency discussion quickly focuses to triangle congruence so that students have a familiar foundation for the development of formal proof. Development of formal proof is the emphasis of this learning sequence so that students can later apply understanding of proof to other geometric theorems. Concepts: - Use the definition of congruence to explain why two figures are congruent. - Use the definition of congruence in terms of rigid transformations to determine if two figures are congruent. - Explore and apply Side Side Side (SSS), Side Angle Side (SAS), Angle Side Angle (ASA) and Angle Angle Side (AAS) criteria to prove triangle congruence. - Demonstrate why Side Side Angle (SSA) and Angle Angle (AA) are not sufficient criteria to prove triangles congruent. - Use triangle congruence criteria to determine if there is sufficient information to classify two triangles as congruent.
Topic 4: Proofs and Applications	Students prove theorems using a variety of formats and solve problems about triangles, quadrilaterals, and other polygons. Precise geometric vocabulary and student knowledge of constructions, rigid transformations, and congruence are applied to prove geometric theorems. Concepts: - Define, recognize and describe special angle relationships formed when lines are cut by a transversal. - Use special angle relationships to solve for missing angle measures. - Use angle relationships to solve for missing angle measures when parallel lines are cut by a transversal. - Construct a logical argument to develop a formal proof. - Create proofs in multiple ways to prove triangles are congruent. - Create formal proofs for triangle congruencies and corresponding parts. - Prove and apply points on a perpendicular bisector are equidistant from the segment's endpoints. - Prove and apply interior angles of a triangle have a sum of 180°. - Prove and apply opposite sides and opposite angles of a parallelogram are congruent. - Prove and apply the diagonals of a parallelogram bisect each other and its converse. - Prove and apply rectangles have congruent diagonals. - Prove and apply the medians of a triangle meet at a point. - Prove and apply the segment joining the midpoint of two sides of a triangle is parallel to the third side and half the length. - Prove and apply base angles of isosceles triangles are congruent and its converse (relationship between side lengths and angle measures).

