Two-Year Algebra 2 A
Semester Exam Review
2015–2016
Exam Formulas

General Exponential Equation: \(y = ab^x \)

Exponential Growth: \(A(t) = A_0 (1+r)^t \)

Exponential Decay: \(A(t) = A_0 (1-r)^t \)

Continuous Growth: \(A(t) = A_0 e^{rt} \)

Continuous Decay: \(A(t) = A_0 e^{-rt} \)

Compound Interest (\(n\) compoundings per year): \(F(t) = P \left(1 + \frac{r}{n} \right)^{nt} \)

Compound Interest (continuous compounding): \(F(t) = Pe^{rt} \)

\(\log_b N = p \) if and only if \(b^p = N \)

The average rate of change for a function \(f \) on the interval \([a,b]\): \(\frac{f(b) - f(a)}{b - a} \)
Unit 1, Topic 1

1. Let f and g be functions that are inverses of each other.

 Complete the following statements.

 a. If the point (a,b) is on the graph of f, then the point ________ is on the graph of g.

 b. If $f(3) = 7$, then $g(7) =$ _____.

 c. The graphs of f and g are symmetric with respect to the line ________________.

 d. The range of f is the same as the ______________ of g.

 e. The domain of f is the same as the ______________ of g.

2. Let f and g be functions that are inverses of each other.

 a. Give a numerical example showing why if $f(x) = x^2$, then $g(x) \neq \frac{1}{x^2}$.

 b. Give a numerical example showing why if $f(x) = 3x$, then $g(x) \neq -3x$.

3. Let f and g be functions that are inverses of each other.

 a. If $f(x) = 3x - 2$, then $g(x) =$ ________________.

 b. If $f(x) = 2x + 9$, then $g(x) =$ ________________.

 c. If $f(x) = x^3 + 7$, then $g(x) =$ ________________.
4. For each graph below, sketch the inverse function on the graph to its right.

a.

b.
5. Jill sells lemonade. The profit, \(p \), in dollars is a function of the number of glasses of lemonade, \(g \), that she sells. The function that represents this relationship is
\[p(g) = 2g - 18. \]

a. Write a function that will represent the number of glasses that she will need to sell to earn a profit of \(p \) dollars.

b. If Jill made a profit of $32, how many glasses did she sell?

6. On a national test, a student receives a score based on the number of correct items. The score, \(s \), in points is a function of the number of correct items \(c \). The function that represents this relationship is
\[s(c) = 200 + 2.5c. \]

a. Write a function that will give the number of correct items that it will take to receive a score of \(s \).

b. A student received a score of 325. How many items did the student get correct?
Unit 1, Topic 2

7. Write the following expression as a radical.
 a. \(\frac{1}{5} \) \(x^5 \)
 b. \(\frac{1}{3} \) \(y^\frac{1}{3} \)
 c. \(\frac{2}{3} \) \(z^3 \)

8. Determine the exponent that goes into the box.
 a. \(\frac{1}{\sqrt{x}} = x \)
 b. \(5\sqrt{x^4} = x \)
 c. \(\left(\frac{x^3}{x^5} \right)^{18} = x \)
 d. \((\sqrt{x})^6 = x \)
 e. \(\frac{x}{x^6} = x^{\frac{2}{3}} \)

 a. \(81^{\frac{1}{3}} \)
 b. \(25^{\frac{1}{2}} \)
 c. \(8^{\frac{2}{3}} \)

10. Sally solves the radical equation \(3\sqrt{x} = -15 \) and obtains the solution \(x = 25 \). Is this solution extraneous? Justify your answer.

11. Giacomo solves the radical equation \(\sqrt{3x+4} = x \) and obtains the solutions \(x = -1 \) and \(x = 4 \). Determine if either of the solutions are extraneous.

12. Johnny solves the radical equation \(\sqrt[3]{x} = -2 \) and obtains the solution \(x = -8 \). Is this solution extraneous? Justify your answer.
13. Sketch the equations below.

a. \(y = -\sqrt{x} \)

b. \(y = \sqrt{x} \)

c. \(y = \sqrt{x + 2} - 3 \)

d. \(y = -\sqrt{x} + 2 \)

14. Let \(f(x) = \sqrt{x} + 7 \).

a. What is the domain of \(f \)? _________________________________

b. What is the range of \(f \)? _________________________________

c. On what interval is the function decreasing? ______________________
15. Solve the equation \(\sqrt[3]{5x} = 10 \)

16. A bike rider sees a deer crossing the street and puts on the brakes. The distance that he travels, in feet, can be modeled by the function \(D(s) = 30 + 5\sqrt{s} \), where \(s \) is the speed of the bike in miles per hour. If the bike travels a distance of 58 feet, what was his speed?

17. The population, \(P \), of a town can be modeled by the function \(P(x) = 60,000\sqrt[3]{x-1970} \), where \(x \) is the year. In what year was the population 120,000?
Unit 1, Topic 3

18. There are four functions represented by tables below. They are either exponential or logarithmic. For each table, write a function equation.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>f(x)</th>
<th></th>
<th>x</th>
<th>g(x)</th>
<th></th>
<th>x</th>
<th>h(x)</th>
<th></th>
<th>x</th>
<th>m(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td></td>
<td>5</td>
<td>1</td>
<td></td>
<td>-3</td>
<td>1/8</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1/3</td>
<td></td>
<td>25</td>
<td>2</td>
<td></td>
<td>-2</td>
<td>1/4</td>
<td></td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1/9</td>
<td></td>
<td>125</td>
<td>3</td>
<td></td>
<td>-1</td>
<td>1/2</td>
<td></td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1/27</td>
<td></td>
<td>625</td>
<td>4</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td>1,000</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1/81</td>
<td></td>
<td>3125</td>
<td>5</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>10,000</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1/243</td>
<td></td>
<td>15625</td>
<td>6</td>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
<td>100,000</td>
<td>5</td>
</tr>
</tbody>
</table>

19. For each equation in column 1, choose the interval in which the solution lies from column 2.

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. (\log_2 18 = x)</td>
<td>(x) is between 0 and 1</td>
</tr>
<tr>
<td>b. (3^x = 10)</td>
<td>(x) is between 1 and 2</td>
</tr>
<tr>
<td>c. (\log 20)</td>
<td>(x) is between 2 and 3</td>
</tr>
<tr>
<td>d. (5^{-x} = \frac{1}{6})</td>
<td>(x) is between 4 and 5</td>
</tr>
</tbody>
</table>

20. Write the logarithmic equation that is equivalent to each exponential equation

a. \(4^2 = 16 \) b. \(10^3 = 1000 \) c. \(e^0 = 1 \)

21. Write the exponential equation that is equivalent to each logarithmic equation.

a. \(\log_{10} \frac{1}{100} = -2 \) b. \(\ln \frac{1}{e} = -1 \) c. \(\log_5 81 = 2 \)
22. Does each function below represent exponential growth or decay?

 a. \(f(x) = \left(\frac{1}{2}\right)^x \)
 b. \(g(x) = 3^{-x} \)
 c. \(h(x) = 5^x \)

23. Write an exponential function in terms of time \(t \) (\(t \) in years) for each situation.

 a. There are 300 bacteria at time 0. The bacteria has a continuous growth rate of 70% per year.

 b. The population of a town is currently 2000. The population is growing at an annual rate of 11% per year.

 c. Jack puts $500 into a savings account. It earns interest at a nominal annual rate of 6% per year, compounded monthly.

 d. The number of deer in a forest is decreasing at an annual rate of 8%. There are currently 700 deer in the forest.

 e. The number of gnats in a swamp decreases at a continuous decay rate of 12% per year. There are currently 4 billion gnats in the swamp.
24. Look at the functions and their graphs below.

\[f(x) = 2^x \quad \quad g(x) = \log_3 x \]

\[h(x) = 10^{-x} \quad \quad p(x) = -\ln x \]

Several properties are listed below. For each property, write the function(s) that have this property. You may use \(f, g, h, \) or \(p \) as your answers.

a. _________________ The graph of the function has a horizontal asymptote of \(y = 0 \).

b. _________________ The function has a range of all real numbers.

c. _________________ The function is increasing on its entire domain.

d. _________________ The graph of the function has a \(y \)-intercept at the point \((0,1) \).

e. _________________ The domain of the function is the positive real numbers.

f. _________________ The graph of the function has a vertical asymptote of \(x = 0 \).

g. _________________ The function has a domain of all real numbers.

h. _________________ The function is decreasing on its entire domain.

i. _________________ The graph of the function has an \(x \)-intercept at the point \((1,0) \).

j. _________________ The range of the function is the positive real numbers.
25. Each function below is a transformation of the function \(f(x) = e^x \). After each given transformation, write the function rule.

a. The graph of function \(g \) is the graph of \(f(x) = e^x \) translated one unit to the right.
\[g(x) = \]

b. The asymptote of the graph of function \(h \) has the equation \(y = -4 \).
\[h(x) = \]

c. The graph of function \(p \) is the graph of \(f(x) = e^x \) reflected across the \(x \)-axis.
\[p(x) = \]

d. The graph of function \(s \) is the graph of \(f(x) = e^x \) reflected across the \(y \)-axis.
\[s(x) = \]

26. Each function below is a transformation of the function \(f(x) = \log_2 x \). After each given transformation, write the function rule.

a. The graph of function \(g \) is the graph of \(f(x) = \log_2 x \) translated two units to the left.
\[g(x) = \]

b. The asymptote of the graph of function \(h \) has the equation \(x = 2 \).
\[h(x) = \]

c. The graph of function \(p \) is the graph of \(f(x) = \log_2 x \) reflected across the \(x \)-axis.
\[p(x) = \]

d. The graph of function \(s \) is the graph of \(f(x) = \log_2 x \) reflected across the \(y \)-axis.
\[s(x) = \]

27. Evaluate the following logarithms

a. \(\log_3 9 = \)

b. \(\log_4 \frac{1}{16} = \)

c. \(\log 10000 = \)

d. \(\ln e = \)

e. \(\log_6 1 = \)

f. \(\ln \frac{1}{e} = \)

g. \(\log_4 8 = \)

h. \(\log_{100} 10 = \)
28. Solve each equation. Show the work that leads to your solution. Your answer must be exact or accurate to three places after the decimal point.

a. \[7 \cdot 10^x = 56 \]

b. \[e^{10} = 1000 \]

29. Jack puts $2500 in the bank at a nominal rate of interest of 3% a year.

a. If the interest is compounded monthly (12 times a year), how much money will Jack have after 5 years? Round your answer to the nearest cent.

b. If the interest is compounded continuously, how much money will Jack have at the end of 5 years? Round your answer to the nearest cent.
30. A house had a value of $100,000 at the beginning of 2015. Its value increases at the rate of 30% per year.

 a. Write a function for the value $V(t)$ of the house after t years.

 $V(t) = ______________________________$

 b. What is the value of the house at the beginning of 2019 ($t = 4$)?

 c. What is the average rate of change of the value of the house from the beginning of 2015 ($t = 0$) to the beginning of 2019 ($t = 4$). Be sure to include the units in your answer.

31. A boat has a value of $1,000,000 on January 1, 2015. Its value decreases at a rate of 20% per year.

 a. Write a function for the value $V(t)$ of the boat after t years.

 $V(t) = ______________________________$

 b. What is the value of the boat at the beginning of 2020 ($t = 5$)?

 c. What is the average rate of change of the value of the house from the beginning of 2015 ($t = 0$) to the beginning of 2020 ($t = 5$). Be sure to include the units in your answer.