Students increase their repertoire of mathematical terms, symbols, and problem-solving tools as they further build their understanding of probability. They recognize applications of probability in game theory, medicine, and insurance, as well as strategies in economics, politics, and military tactics.
Counting principles are studied in this unit. The number of ways an event can occur is fundamental to the study of probability. In previous courses, students used tree diagrams, lists, and models to investigate the relationship between the number of events that may occur and possible outcomes. In this unit, students learn the Fundamental Counting Principle, as well as the concepts of permutations and combinations as methods for determining how many ways an event may occur.
In this unit, students investigate events that do not have equally likely outcomes, independent and dependent events, composite events and their associated sample spaces, and simulations. Contextual situations, concrete models, and connections to prior learning provide students with opportunities to conceptually develop their understanding of probability. Students are encouraged to explain their thinking and discuss multiple strategies. An understanding of probability prepares students to explore and analyze authentic applications and increasingly complex problems in future mathematics courses.
Instructional flow (PDF)
Unit 7 Standards for Investigations into Mathematics (IM)(PDF)
Explanation of what your child should understand by the end of each unit (enduring understandings), how he/she will get to that understanding (essential questions), and how he/she will be evaluated (indicators).
Content map for IM Unit 7 (PDF)
No content
Unit 1 | Unit 2 | Unit 3 | Unit 4 | Unit 5 | Unit 6 | Unit 7 |